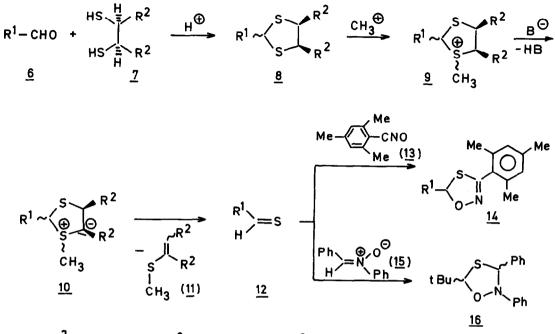

FRAGMENTATION OF 1,3-DITHIOLANE-DERIVED SULFUR YLIDES. A CONVENIENT THIOALDEHYDE SYNTHESIS

Ernst Schaumann* and Gerd Rühter


Institut für Organische Chemie der Universität Hamburg Martin-Luther-King-Platz 6; D-2000 Hamburg 13, Fed. Rep. Germany

Summary: S-Ylides <u>10</u>, which are generated by regiospecific deprotonation of 1,3-dithiolanium salts <u>9</u> with electron-withdrawing groups in the 4,5 positions, fragment under mild conditions to generate thioaldehydes <u>12</u>.

The fragmentation of 1,3-dithiolane carbanions is synthetically useful, if one of the sulfur atoms is part of an efficient leaving-group. Thus, 2-oxo= dithiocarboxylates are obtained starting from <u>1a</u> ($\mathbb{R}^1 = \operatorname{acyl}$) via 2-deprotonation¹ and the route <u>1b \rightarrow 3b \rightarrow 5</u> allows convenient access to thioketones or thioketenes². Thioaldehydes were virtually unaccessible till very recently, but are now emerging as synthetically useful species³ and so constitute another attractive target of dithiolane fragmentation. However, generation of thioaldehydes from <u>1</u> ($\mathbb{R}^2 = H$) requires selective deprotonation to give <u>3</u> rather than <u>2</u>. Moreover, in an exploitation of the particularly efficient fragmentation route from <u>1a</u>, deprotonation of the methyl group on sulfur must also be excluded. We envisaged that the presence of electron-withdrawing groups in the 4,5 positions of the heterocyclic ring would lead to selective generation of the 5-deprotonated species 3a.

Synthesis of dithiolanes <u>3</u> with the desired substitution pattern is achieved via thioacetalization of aldehydes <u>6</u> with dithiols $7b^4$ or c^5 . Starting from formaldehyde (<u>6</u>, $R^1 = H$), reaction with the commercially available acid <u>7a</u> and subsequent ester formation (MeOH, H_2SO_4 , $20^{\circ}C$, 7 days) is advantageous.

<u>7a</u>: $R^2 = COOH$; <u>7b</u>: $R^2 = COOMe$; <u>7c</u>: $R^2 = Ph$

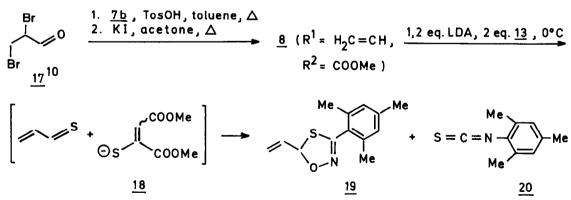
<u>8 - 10 , 14</u> : see Table

Methylation of <u>8</u> can be carried out with methyl fluorosulfonate ("magic methyl", 3 eq. in CH_2Cl_2 or 1 eq. in $MeNO_2$, $20^{\circ}C$, 18 hrs; for $R^2 = COOMe$) or with trimethyloxonium tetrafluoroborate (in CH_2Cl_2 ; for $R^2 = Ph$); alternatively, methyl trifluoromethylsulfonate can be employed. Without purification, the solutions containing the sulfonium salt <u>9</u> are concentrated <u>in vacuo</u> and, in THF, treated with lithium diisopropylamide (LDA), Hünig base, or sodium hydride (Table) to afford ylides <u>10</u>, which undergo spontaneous fragmentation of the type <u>3a \rightarrow 5</u> generating vinylsulfide <u>11</u> apparently along with thioalde-hydes <u>12</u>.

By analogy with other thiocarbonyl compounds⁷, products <u>12</u> can be efficiently trapped with added mesitonitrile oxide (<u>13</u>) in a 1,3-dipolar cycloaddition to give 1,4,2-oxathiazoles <u>14</u>. Similarly, benzylidenaniline N-oxide (<u>15</u>) can be used and, with thiopivalaldehyde (<u>12</u>, R^1 = tBu) furnishs heterocycle <u>16</u> (Table). On heating in toluene, <u>16</u> gives a (3+2) cycloreversion regenerating the thioaldehyde which, in the presence of 2,3-dimethylbutadiene, is intercepted as the Diels-Alder adduct (oil, 39 %).

At 0-20[°]C, in the absence of a trapping agent, thiopivalaldehyde (<u>12</u>, R^1 = tBu) forms a polymer (49 %). This thermally formed polymer seems to be identical with the known photopolymer⁸ as, on heating, it is cleaved to monomeric thioaldehyde. Generation of the thioaldehyde at 110[°]C leads to the trimer⁹

as is the case for thiobenzaldehyde $(\underline{12}, R^1 = Ph)$ independent of temperature.


Dithiolane <u>8</u> (R^1 = CH=CH₂, R^2 = COOMe), the precursor of thioacrolein, gives no clean methylation product. However, the thioaldehyde can be generated and trapped by <u>13</u> on treatment of <u>8</u> with base. The anionic fragment <u>18</u> is

	Dithiolanes <u>8</u>			Trapping products <u>14</u> , <u>16</u> , <u>19</u>		
R ¹	R ²	Yield [%]	m.p. [^O C]	Reagent	yield [%]	m.p. [⁰ C]
Н	СООН	65 ⁶	210			
	COOMe	43	37-38	<u>13</u>	24 ^{b)} , 27 ^{c)} 63 ^{b)}	75
Me	COOMe	80 ^g)	71 ^{e)}	13	63 ^{b)}	69-71
tBu	COOMe	81 ^{f)} , 87 ^{g)}	34	<u>13</u>	65 ^{b)} , 63 ^{C)}	oil
				<u>15</u>	59 ^{b)}	61
	Ph	91 ^{f)}	75	13	47 ^{C)} , 46 ^{d)}	oil (as above)
Ph	COOMe	96 ^{f)} , 45 ^{g)} 68 ^{f)}	59-60 ^{e)}	13	46 ^{d)} , 48 ^{c)}	80-81
H ₂ C=CH	COOMe	68 ^{f)}	84	<u>13</u>	34 ^c)	oil

Table. Isolated yields and physical data of the new compounds a)

a) Satisfactory microanalytical data and IR, ¹H NMR, and ¹³C NMR data in accord with expectations were obtained. - b) $EtNiPr_2$ as base, 0^oC. - c) LDA as base, 0^oC. - d) NaH as base, 20^oC. - e) Mixture of diastereomers; m.p. after recrystallization from dichloromethane/petroleum ether. - f) Toluene, TosOH, water separator, reflux. - g) Methanol, gaseous HCl, 0^oC.

deactivated by using an excess of trapping agent <u>13</u> to give mesityl isothiocyanate (20, 39 %) via an unstable heterocyclic intermediate.

In conclusion, it has been demonstrated that dithiolanes <u>8</u> are convenient precursors of highly reactive thioaldehydes <u>12</u> in a one-pot reaction. Considering the mild reaction conditions, the approach nicely complements the photochemical^{3a} or thermal^{3b} routes to <u>12</u> and is more variable in R¹ than the base-induced 1,2-elimination methods^{3c}. In comparison with the fluoride-induced cleavage of α -silyldisulfides^{3d}, the ready accessibility of pre-

cursors 8 is advantageous.

Acknowledgement - We gratefully acknowledge financial support by "Deutsche Forschungsgemeinschaft" and "Fonds der Chemischen Industrie", and thank Professor E. Vedejs, University of Wisconsin - Madison, for helpful discussions.

References and Notes

- E. Vedejs, M.J. Arnost, J.M. Dolphin, and J. Eustache, <u>J. Org. Chem. 45</u>, 2601 (1980).
- E. Schaumann, U. Wriede, and G. Rühter, <u>Angew. Chem.</u> <u>95</u>, 52 (1983);
 <u>Angew. Chem. Int. Ed. Engl.</u> <u>22</u>, 55 (1983); <u>Angew. Chem. Suppl.</u> <u>1983</u>, 63.
- 3a. E. Vedejs, D.A. Perry, K.N. Houk, and N.G. Rondan, J. Am. Chem.Soc. <u>105</u>, 6999 (1983). E. Vedejs, T.H. Eberlein, and D.L. Varie, J. Am. Chem. Soc. <u>104</u>, 1445 (1982). K.F. Burri, R. Paioni, and R.B. Woodward, to be published. We thank Dr. Burri for a copy of the manuscript prior to publication.
- b. J.E. Baldwin and R.C.G. Lopez, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u> <u>1982</u>, 1029; <u>Tetrahedron</u> <u>39</u>, 1487 (1983).
- c. C.M. Bladon, I.E.G. Ferguson, G.W. Kirby, A.W. Lochead, and D.C. McDougall, <u>J. Chem. Soc., Chem. Commun.</u> <u>1983</u>, 423. - G.W. Kirby and A.W. Lochead, <u>J.Chem. Soc., Chem. Commun.</u> <u>1983</u>, 1325.- G.W. Kirby, A.W. Lochead, and G.N. Sheldrake, <u>J. Chem. Soc., Chem. Commun.</u> <u>1984</u>, 922, 1469.
- d. G.A. Krafft and P.T. Meinke, Tetrahedron Lett. 26, 1947 (1985)
- M. Gerecke, E.A.H. Friedheim, and A. Brossi, <u>Helv. Chim. Acta</u> <u>44</u>, 955 (1961).
- 5. C.G. Overberger and A. Drucker, J. Org. Chem. 29, 360 (1964)
- 6. M.O. Hedblom, Ark. Kemi 31, 489 (1969); C. A. 72 54600a (1970)
- 7. Reviews: C. Grundmann, <u>Synthesis</u> <u>1970</u>, 344. D. St. C. Black, R.F. Crozier, and V.C. Davis, <u>Synthesis</u> <u>1975</u>, 205. See also: D. St. C. Black and K.G. Watson, Aust. J. Chem. <u>26</u>, 2491 (1973).
- 8. E. Vedejs and D.A. Perry, J. Am. Chem. Soc. 105, 1683 (1983).
- 9. S. Jerumanis and J.M. Lalancette, Can. J. Chem. 42, 1928 (1964).
- 10. A. Le Coq and A. Gorgues, Org. Synth. 59, 10 (1979).

(Received in Germany 17 July 1985)